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SOME BUBBLE AND CONTACT PROBLEMS'

JOSEPH B. KEL.I R

-bstract. A number of problems involving bubhle,, in a fluid. or contact of urtaces. or hoth arc
considered. II each case the size and or tile shape of tile hui'ble. or the ocatlon ot the pint of contact. are
unknown ad', ance and muNI be found. When the prob:en , at," h, ulatcd natlhtnat cal'. b.;ida:
conditions m; ust be satisfied at the bubble surface and at th,: c,,ntaci points, which are thus free b'tindaries
the problems are postbuckling behavior of an elasm tuhe. contact problems insolsing a buckled elastia.,
steep capillary waves with trapped bubbles, deformation of a bubble in a uniform flow. distortion of a bubble
in a straining low, free oscillation of an underwater explosion bubble, and forced oscillatIon of a bubble in a
sound field.

1. Introduction. Physical problems involving bubbles or drops in a fluid generally
require the determination of the size and, or the shape of the bubble or drop surface.
Problems involving the contact of elastic or fluid surfaces usually require the location of
the points of contact. In both cases, boundary conditions must be satisfied at the
unknown bubble or drop surface or contact point. Thus these surfaces or points are
,-free" boundaries, which must be found as part of the solution of the problem. In the
case of bubbles in contact with themselves or with other surfaces, there are contact
points on the bubble surface. These points are thus free boundaries of free boundaries.
which might be called "'free free boundaries".'

Wkith the help of a number of coworkers, I have analyzed various free boundar

problems involhing bubbles and/or contact of surfaces. I shall describe some of them in
this report. emphasizing the reasons for considering them. the principles mnholsed in
their formulation, and the nature of the results. In all cases. some analhtical result,, and
some numerical results were obtained. I shall present some ol the numerical results and
some figures based on them. indicating what the numerical methods ere khe.i that
seems appropriate. [shall just mention the analytical results. rcferrin for their dcladlcd
presentation to the relevant published articles.

The goal of this report is to show that certain problems im oh ing contact ,)I surfacC

can be formulated and analyzed in a relativel, simple %ay. In some case. the
maintenance of contact is required to preent the unphs.sical phenomenon of a surface
crossing over itself. When the surface is a fluid-fluid interface, the resulting contact ma
lead to the occurrence of bubbles or drops. When the bubbles or drops are deformed.
parts of their surfaces may again come into contact with one another and form nes
bubbles or drops. Since phenomena involving the contact of surfaces are of widespread
occurrence, it is to be hoped that the results reported here will stimulate further
investigations of them.

2. Postbuckling behavior of an elastic tube. While ns esticating blood floss It

arteries and veins, my colleague S. I. Rubinow and I realized that the pressure of the
blood in a vein could fall below the ambient pressure outside the vein. As a
consequence, the wall of the vein could buckle, thus changing the vein cross section
from circular to some other shape, and thereby increasing the %ein's resistance to blood
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flow. Therefore, with J. E. Flaherty [21, we studied the buckling and postbuckling
behavior of an elastic tube.

We assumed that, for any given pressure difference p, the equilibrium configura-
tion of the tube would be a cylinder, and we denoted by C its cross sectional curve. Then
the equations of elastostatics governing the tube are the same as those of an elastic ring
C compressed by a force p per unit length. This problem had been studied by I.
Tadjbakhsh and F. Odeh [3]. They assumed that the ring is inextensible and is governed
b) the Euler-Bernoulli beam theory, with the bending moment proportional to
kis, - 1. Here kis 'is the curvature of C at arclength along it. and I is the curvature
when C is a circle. In dimensionless variables these assumptions lead to the equation

Q2.1i k " +,W -ck - p = (), 0<= t-v _2 7.

Here c is a constant to be determined. In addition, k must be periodic with period 2 IT.
and the integral of k over a period must be 2 -,. This latter condition follows from the
fact that kis) = fitsi, where Oisi is the angle between the tangent to C and some fixed
direction.

For every value of p -0. this problem has a solution kis =I and c=-p.
corresponding to C being a circle. As Tadjbakhsh and Odeh [3] showed, this unbuckled
solution is the onls solution for p -_ 3, while for p -3 there are other solutions. Each
other solution is periodic with period 27r/n for some integer n 2 and, for a suitable
origin of %. it is odd in s. Thus each such solution satisfies the conditions

12.2, k M - , k' ITPl--1 I f kivIds = n.

Furthermore. it exists onh for p • p.. where p , is called the nth buckling load. They
computed the solutions numericallk for the tirst few values of n for ., range of p .
For the nth solution. when p reached a second critical value p .,. P 2. n pairs of points
came into contact with one another, while for ,z = 2. one pair of opposite points came
into contact. For p .p ,. the ring crossed oer itself.

('rossing oser ma, be possible for opposite parts of a ring, if one part comes out of
the plane containing the rest of the ring Howe%er it is not possible for a tubc. Therefore
we reexamined the problem for the Pith solution with p -p ,,. to find a solution which
does not cross o \er itself A t: required that for p " 1., one pair of points in each period
be in ,.ontact with one another For Pi 2. these points are the endpoints of the period,
s4 there isonlN one pair in :ontact, and the\ are at : -r 2 For n .2 the locations ±s
of the contact points must he determined

In thf: case n 2 we found that the sc-ond ondittion in 2 2 1 had to be changed so
that 2 2, became

At If' 1 1 4 ! 22 _' i " forp p .

%ke -ot'd 7 I and 7 numt'r ailh to ,,btain 4, and for %arious salues of p from

11 -v I up T ; ;, 24- Ihitn wt ,1ed 2 I and 2 1,for p from p -p:=
" ,4' uptop p I It 44 ,hcnth'turaurc k, ir 21 ai thecontact pointbecamezero.
1-o1 r • p c 4,tirned 'hat th" ,,lut,,ii has an inter\al of contact extending from
SM tAlut , 1uph til hn w t showcd thatl and the shape of the remaining part
f tht' ,..uti.,n o,,uld N.. btaincdt h% a similarit, transformation from the result for

1, p lht fculrarr ,hoi iil-'i I ,and corresponding results for n =4 are shown in
LM 2
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Once we had the shape of the tube's cross section for n = 2 and each value of p. we
solved the equation Au = -1 within the cross section with u = 0 on the boundary for
each p. This yielded the velocity of the flow of a viscous fluid along the tube. The results
showed that the conductivity of the tube, i.e., the flux of fluid for unit pressure gradient
along the tube, decreased drastically when the tube began to buckle. These results have
been confirmed quantitatively by the experiments of H. Zeller and R. Wirtz [4]. The)
measured the flow through a rubber tube buckled by a pressure difference p, and their
results agreed fairly well with our calculations, as is shown in Fig. 3. Their correspond-
ing results for a tube of polyvinylchloride (PVC), also shown in Fig. 3, do not agree so
well, although they would do so if the Young's modulus E used in scaling the horizontal
axis were replaced by E/2. The cross sections of buckled Penrose tubing in various
stages of collapse during flow look like the cross sections in Fig. 2 (see [5], [6]), as do the
cross sections of the vena cava in normal breathing [7).

0 Theorie: Flaherty, Keller and Rubinow 11972 1.
R,, *Rubber-Tube: E= 1.6 • 106 N/m, t = 0.5, h =5.5 mm,R,,= 25.2 mm.

1.0- T PVC-Tube: E = 10.4 106 N/r. v = 0.4, h = 5.0 mm, R,. 24.9 mm.

02.6-

A
A,.

0.4-

0.2- -6-

0 1 I I

0 2 4 6 8 20 12 14 16 18 20
E h'P :(P - P') i2i I-v:! R

FIG. 3. The normalized flow through a tube as a function of the pressure difference between the outside and the
inside. The open circles and the dashed curve are based on the theory described in § 2. The black cirecles ar.
experimental values for a rubber tube measured by H. Zeller and R. Wirtz [4]. The black triangles are their
measured values fora tube made of pol vvinylchloride (PVC). They would havre agreed better with the theory ifa
smaller value had been used for Young's modulus E of PVC

3. Contact problems for a buckled elastica. In 1744, Euler formulated and solved
the problem of the buckling of a thin elastic rod or column, which he called an
"elastica", subject to a compressive load P at its ends. He found that a rod clamped at its

2ends remained straight or unbuckled for 0S P - PbI = 41r , where PhI is the dimension-
less first buckling load. For P > PbI the rod could buckle, and as P increased it deformed
more and more until a pair of points came into contact at some value P '. For P > P, I the
elastica crossed over itself. If we consider the elastica to lie in a plane, or to be a cross
section of a cylindrical elastic sheet, it cannot cross itself. Therefore J. E. Flaherty and I
sought a solution for P> PI which did not do so [8].

In dimensionless variables, we let 0(s) be the angle between the x-axis and the
tangent to the elastica at arclength position s, with s ranging from 0 to 1. Then the
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equation of equilibrium, according to the Euler-Bernoulli beam theory, is

13.1) 0,,+Psin9=0, 0 - 1.

The condition that the ends are clamped along the x-axis yields

(3.2i O(00=0, 0(1 =0, j sin Ois)ds =0.

We solved (3.1) and (3.2) numerically for various values of P from PhI 42rr to
P, =72.187, at which contact first occurs. iSee Fig. 4.)

0

N

0.00 .25 50 .75 1.00

P- 40.000

0

N N

0 0o g
0.00 .25 0.00 .25

P,60.000 Ps 72.187
s, =0.130

o 0 0

44,

8 8
0.00 .25 0.00 .25 0.00 .25

P*200 000 P-400000 P- 600.000
$'-0.098 s, = 0.076 s, = 0.065

Fio. 4. The shape of a lamped elastica in the mode n = I for six talues of the end load P. Contact occurs at
P, - 72.187 For P > P, the similarity solution was used to compute the shape of the loop between the points of
COntaCt.
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For P > P, t, we require contact to occur between the two points s, and I - st, with
s1 to be found in the range 0< s1 < 2. Then (3.1 )holds only in the intervalsO - s <s, and
I -sI < s < 1, while between these interals it is replaced b)

03.3 0,, O+(P-R)sin0=0, st<s<I-s).

Here R is the contact force, which is to be found. We seek a solution in which Os) is
antisymmetric about s =2, so it suffices to solve (3.1) for 0<s <s, and 13.31 for
sI < s < '. In addition, we have the six conditions

0(0) =0, 0(si) = r-/2, 0() = 0, J cos (s) ds= 0, 0and 0, continuous at s,.

(3.4)

These six conditions suffice to determine sl, R and the two integration constants in each
interval.

We found that the solution of (3.3), which describes the closed loop, could be
determined for any P > P,1 from the solution at P,.I by a similarity transformation.
Therefore for P> P,I we only had to solve (3.1) numerically, together with the
appropriate conditions from (3.4).

The results for three such values are shown in Fig. 4. We also found that, for P
large, s, is given by

(3.5) s, - 1.854P ' 2-6.055P , P >>1.

Thus the contact points approach the endpoints as P tends to infinity.
These results can be confirmed qualitativel, with a strip of flexible plastic, by

holding one end in each hand and bringing the ends toward one another.

4. Capillary waves with trapped bubbles. Sufficiently short waves on the surface of
a liquid are governed mainly by surface tension. For many years such capillary waves
were studied on the assumption that the amplitude a was much less than the wavelength
A, so that the steepness s = a/A was small. Then it was possible to linearize the
governing equations. In 1957, D. G. Crapper (9] sought to express the wave motion as a
power series in s. From the regularity of the first few coefficients he guessed the general
term, verified it, and then was able to sum the series in closed form. His result yielded
waves ranging from sinusoidal waves for s small up to a steepest one at s = .73, when
adjacent waves touched one another at one point. For s > .73, his result was unphysical
since adjacent waves overlapped one another.

In view of the studies reported in the two preceding sections, I believed that it
should be possible to obtain steeper waves by enforcing contact of adjacent waves and
preventing overlap. Therefore J.-M. Vanden-Broeck and I [ 10] did just that. Following
Crapper, we considered steady two-dimensional periodic capillary waves on the surface
of an inviscid incompressible fluid of infinite depth. We considered the complex position
x + iy as a function of the complex potential p + id, in the halfplane d 0. The
streamline 0 = 0 corresponded to the free surface. At it, the pressure in the fluid had to
exceed the pressure in the air above the surface by the surface tension times the
curvature of the surface. In dimensionless variables this led to the equation

(4.1) x +y 1) -l T(x,.y, ,-.,,x,,)(x , ; =o on 0

Here T is a dimensionless constant proportional to the surface tension. The
specification of the fluid velocity at y = -oo is that (x,, y,) - (1, 0) as 4 1 -o'.
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To complete the formulation of the problem, we empl,, ed the a,sucled periodicits
in ; of the solution and the Hilbert transform to obtain

V4.2 v , ,i , i0 ][Cot r- ' -, -, -1,;

In terms of i. the steepness is gi en b

Equations i4 .1)-i4.3t constitute a problem for the determination of the periodic
functions xi;, 0t, y€€ (I0i and T for a given value of s.

When s is large enough, we modif.' the preceding formulation by requiring contact
to occur at the point ; = a, il = 0 on the free surface, with u to be found in the inter% al
0' a < '. Then at the contact point we require

4.4)a 0) = 0. xI a, 0= X! 1, 41d=;

Since contact of adjacent waves results in a trapped bubble of air. we permit the
--essure in the bubble to exceed the pressure in the air above the surface by the
.imensionless amount P. Then we must replace the right side of 14.1 by P in the range

< 'r !-
We solved the problem without contact by introducing N - I equally spaced mesh

points ;. in the interval 0 !, 1, the values .x ; = .-, ' .. i. and the values 1 or
midwav between adjacent mesh points. By using, the trapezoidal rule in 1.2' 1 %e
expressed the % in terms of the v. Then we used centered four-point interpolia, n ind
difference formulas to ealuate the derivatives in .4., . In this wa\ \se :onerted 4 1
into a set of Y - I nonlinear algebraic equations for the C, and 14.3, into an \ - 2,nd
equation. We solved these equations b, Nexxton's method for T and th,- .\" - '
quantities %' using N = 40 and N .The two sets of results agreed to four decimak
with each other and with Crapper's solution.

To find solutions with contact, we introduced the two extra unknowns ,k and P. and
the two extra equations (4.4). We also forced a to be a mesh point b% separatel.\
subdividing the intervals 0 " t and a <  _ . Then we solved the resulting equa-
tions for a, P, T and the x, by Newton's method using 60J mesh points. For each % alue of
V we used, as the initial approximation to the solution, the solution for a slightl\ smaller
value of s, starting with Crapper's solution at s = 0.730.

We were able to find solutions with v - 0.730. and we computed them up to I .5.
It seems clear that we could compute them for any larger value of s by increasing the
number of mesh points. Typical solutions are shown in Fig. 5. We also found solutions
with s < 0.730, in the interval 0.663 < s < 0.730. so that two solutions exist in this
range-Crapper's and this new one. As % decreases to 0.663. the curvature of the
surface at the contact point decreases to zero. which is whx this familk ends there. On
the other hand, as F - :x, each bubble becomes infinitely long and narrow, with its width
proportional to e -2". SimultaneouslN the surface above them tends to a series of
semicircles tangent to one another.

5. Deformation of a bubble in a uniform flow. Surface tension forces a bubble in a
liquid at rest to become spherical in three dimensions arid circular in two dimensions.
But pressure forces due to a fluid flowing around a bubble can deform it to another
shape. We have seen an example of this in the previous section. where the bubbles were
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s=0.6635

0. 7

=1 .4

s=0.75

FIG. S. Computed profiles of the free surface and bubble for five values of s. The upper curve for the case
s =0.6635 shows the bubble on a scale expanded by a factor of 10.
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long and tapered at their upper ends. But in that case each bubble s4Ls affected b the
presence of the upper surface and the other bubbles. It is more important to know
how an isolated bubble is deformed, since bubbles often occur in isolation. Therefore
J.-M. Vanden-Broeck and I L 1 ] investigated this deformation.

We considered a two-dimensional bubble in a steady potential flok of an inviscid
iniompressible fluid. ihe flow wkds assumed to be uiifo in at irihnity and the pressure
within the bubble was assumed to be constant. On the unknown bubble boundary, the
fluid velocity was required to be diected tangentially and the bubble pressure was
required to exceed the fluid prcssuie by the su;tace tension multiplied b. the curvature
of the boundary. Upon introducing dimensioniess variables, we found that the
coefficient of surface tensioi o could be eliminated by using 2o/tipt I as the unit ot
length, where p is the density ot the fluid and U is the velocity at inhoity. I hen the
problem contained a single dimensionless parameter y. defined by

(5.1) y = 2pl, --p, )/pU 2.

Here p, is the pressure in the bubble and p, is the stagnation pressure, which equals the
pressure at infinity minus pUL2/2.

Before solving the problem, we required that the flow and the bubble be symmetric
about the x-axis. which we took parallel to the Nelocity at infinity. Then it sufficed to
consider the flow outside the bubble in the halfplane Yv ). I his flow region cor-
responded to the halfplane 0 (( 0 of the complex potential plane, and the bubble surface
corresponded to the segment --h < b of the axis e = 0. with b unknov, n. It was
convenient to set I)4% so that the bubble surface corresponded to the scgment
-1 < < 1, = 0. Then we sought x -- iv as an analytic function of b; - i, in this
halfplane. The velocity at infinity was lx,. v. ) = h. 0).

By applying Cauchys theorem to k - iv - h and. taking the real part, we obtained
the Hilbert transform relation

(5.2) x.,: MI = b f' d/ . <, -1 .
77

We also wrote the pressure jump condition on the bubble surface in the form

In addition, the symmetry about the x-axis yielded

l i m bX(¢, 0)

These equations (5.2)-(5.4) constituted the problem for the determination of
x,(€,, 0), y, (p€, 0) and b for a given value of the parameter y.

To solve these equations, we required the bubble to be symmetric about the v-axis

and therefore about the q-axis. Then we could restrict our considerations to the interval
0:5 < 1 with y,¢(0, 0)=0. Within this interval we introduced the new variable a in
place of € by the equation ,c 1 - a 2. This eliminated from the solution the singularities
at the stagnation point = 1. d/= 0. Once this new variable was r. -led, we introdu.;d
mesh points and values of the unknown functions at the mcsh points just as in the
previous section. By proceeding in the manner described there, we converted the
equations above into a set of nonlinear algebraic equations for b and the values of v, at
the mesh points.



To solv e these equ at Ions b% Ncv. ton , mnetho d for I !i\ en 'a lue of v. we needed an
initial approximation to the SOIlutIon. Therefo re wt: e determined the ass mpiotic form o
the solution for il large. "~hen the bubble rLrids ito a circle of radius : . %ke used I h i, is
the initial approximation foi a iarge alac of - and iterated until 'se obtained a solution.
Then %. e used that solution as the Initial ipproxmmiion for a slightlv smaller '. a inc of
and so onl.

Three of the resultin i hbbles are showsn in Fit. n for 2.3. (.oI and o,42. At
N 1)042 the opposite sides of the bubble just touched one another on the k -axis The

bubble mig~ht then split into t%%, bubbles. F-or -.- I our result agreed with the anals ui

solution obtained b% L. B. MI eod I12 in this special case.

o.2 ~ ~ ~ ~ it1 1 1 .

F (i One ;w1lo' h 2 AWAjr';., . . ' I i- . - 2

The half-bubbles shownt in Fig. 6 also represent bubbles attached to a wall with
contact angle t3 =r'2. We also determined the shapes of bubbles attached to a w~all \, ith
other valu. s of (3bv a suitable modification of the preceding method. The ditference in
the formulation was that the right side of 15.4w1\as replaced bx =tan (3rhen in changing
variables we set I -- a

For each value of (3. the bubble began as a circular arc of radius f for \er\ )a; cc,
and it deformed as y was decreased. Finally. a value of y, which -v called v,.ftq , w aS

reached at which opposite sides of the bubble came into contac-t with one another. [or
03 if!7r

2 the contact occurred on the wall as in Fig. 6. Hlowever fo- 13 - 7 '2. It Occurred
off the wall as is shown in Fig. 7 for 13 = 2,'3 -1 20'. Bubbles are presented in that
figure for y =1.3, y = -0.6 and y = yi 2 r-,'3' - 1.6. The negative \values of indicate
that the pressure in the bubble is less than the stagnation pressure. If the bubble breaks
into two at the point of contact, part of the bubble will be off the wall and part will
remain attached to the wall, and our calculation determines the size of each.
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/ I/ 6

-0.3 -10.2 -().1 (). 0,I 1.2 10,3

FIG. 7. Three computed profiles for a bubble on a wall uith contact angle f 120 andy 1.3, y -ff6
and y = y,)= -1.6. At y = y, = -1.6, the bubble touches itself at about the distance v (0.35 from the % aff.

6. Bubble distortion in a straining flow. In the mixing of two fluids, a drop of one
fluid may be broken up into smaller drops by the action of the other fluid flowing around
it. To investigate this process J.-M. Vanden-Broeck and I [13] considered the distortion
of a drop or bubble in a straining flow, a problem proposed to us by Professor A.
Acrivos. As in the preceding section, we treated the two-dimensional case of a constant
pressure bubble or drop in an inviscid, incompressible fluid. The stream function of the
flow was assumed to be axy far from the bubble.

The formulation of this problem and the method of solution were very similar to
those of the preceding section, so we shall just indicate the differences and then describe
the results. The length scale we chose was (2r,'pa2 ) ', the velocity scale was
12o'a/p)', and then the sole dimensionless parameter was Y defined by

(6.1) y = 2(p, pb)/(2ora )
21
1pl. %

Because of the symmetry of the incident flow, it sufficed to solve the problem in the
angular sector 0 _- 0! 5 ir/ 4 with 9 = 0 a streamline and 9 = r14 a potential line. We then
introduced new variables, used the Hilbert transform, introduced a mesh and difference
formulas, etc. Finally we solved the resulting equations by Newton's method.

The calculated bubbles for three values of y are shown in Fig. 8. As y - 1c, the
bubble tends to a circle of radius y '. and the bubble shown for v = 5 is still close to a
circle. However when y has decreased to zero, the bubble is nearly a square with
rounded corners. This is understandable because there are four stagnation points where
the bubble meets the x and v axes. At them, the fluid pressure is maximal and it pushes
the bubble surface inward. When y - 1.24 these four points have mosed further in
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1.

Fi(, 8. Computed proflet of bubble in a straininq floti ivtth y : 5. v = 0 and -1 24

while in between adjacent pairs of them four horns or spikes have appeared. We have
also determined the ultimate form of the horns as y is further decreased. We find tha*
near each tip opposite sides come into contact with one another and form a small bubble
there.

7. Damping of underwater explosion bubble oscillations. Now we shall consider a
time dependent problem, the oscillation of the gas bubble produced by the detonation
of an explosive charge under water. Such a bubble is initially small, spherical, and at
very high pressure. It expands rapidly, remaining spherical and pushing the water
radially outward. When the bubble pressure reaches the ambient value, the water is still
moving outward, causing the bubble to overexpand. When the expansion finally stops.
the bubble begins to contract but the inertia of the water again causes it to overcontract
and the process repeats itself. In this way the radial oscillations of underwater explosion
bubbles are produced. The dots in Fig. 9 are experimental values of the radius of one
such bubble at different times after detonation, and they show the typical oscillations.

In 1916, Rayleigh formulated the theory of these oscillations on the assumption
that the water was inviscid and incompressible. His theory yielded undamped periodic
oscillations because it did not contain any mechanism for energy loss. It was later
realized that acoustic radiation was the main loss mechanism. This was verified b

a

3

2

I.

0 i 2 3 4 5 6 7 9 2 ' , 1,2 1'3 14

FIG. 9. The bubble radius as a function of time for a 0.55 lb. charge of tetryl detonated at a depth of 300 ft.
below the water surface. The dots are experimental points and the solid curve is calculated from t7.4). The unit
of length is d = 6 inches and the unit of time is dtppn 1) 4.85 milliseconds.
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estimating the acoustic loss, calculating the consequent damping, and comparing the
result with observations.

To incorporate the loss mechanism into the theory, I. 1. Kolodner and 1 [14], in
1951, developed a new theory of the oscillation taking account of the compressibility of
the water. We did so by using the wave equation for the potential function of the water
motion, rather than Laplace's equation which Rayleigh had used.

The use of the wave equation to describe large amplitude motions was considered
inappropriate at that time, and it still is so considered by many fluid dynamicists. On the
other hand, the less accurate Laplace equation is regarded as perfectly suited to
describe such motions. This difference in attitude is probably due to the differences in
the methods of derivation of the two equations. In the derivation of the wave equation,
the smallness of the velocity is emphasized to justify linearization of the compressibility
terms. However in the derivation of Laplace's equation, the compressibility terms are
just ignored from the beginning, so it is never necessary to mention that the velocity is
small.

Our theory of the bubble oscillation is based on the assumption that the pressure
P(a) in the bubble is a function of the bubble radius a (), given by the adiabatic relation

(7.1) P(a) = k[4a3 /3] - .

Here k and y are given constants. The potential function ,(r. t) of the water motion is
assumed to satisfy the wave equation with sound speed c:

(7.21 %,pC- 2p ,= 0.

Then the pressure p(r, t) in the water is given by the Bernoulli equation

(7.3) p(r, t) = P, -p(P, + 2€ ).

where Po is the initial pressure and p is the density of the water. The formulation is
completed by requiring the pressure p(a, 0) in the fluid to equal that in the bubble, P(a),
at r = a, and requiring the fluid velocity p,(a, ) to equal a, at r = a. We also give the
initial radius and velocity of the bubble and assume that p = 4, = 0 for r > a at t = 0.

From this formulation we derived the following autonomous nonlinear second-
order ordinary differential equation for a (t):

(7.4) (a, -c)(aa,, +2a -A I-a +a (a2A), = 0.

Here A(a) is defined by

(7.5) Afa)=p '[P(a)-pJ.

If we divide (7.4) by c and let c become infinite, we obtain Rayleigh's equation for a (t.
A phase plane analysis shows that the equilibrium point of 7.4 is a spiral point,
corresponding to damped oscillations, while that of Rayleigh's equation is a center,
representing periodic oscillations.

In Fig. 9 the solid curve represents the solution of (7.4i obtained numerically for
initial conditions corresponding to the bubble whose observed radius is given by the
dots. We see that the theoretical curve is in good agreement with the observed data,
and it correctly predicts the damping of the radial motion due to the radiation of
acoustic energy. From a (t the pressure pulses radiated by the bubble can be found.
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8. Forced oscillations of a gas bubble in a sound field. To describe the oscillation of
small bubbles in a fluid, such as ca\ itaton bubbles or air bubbles, it is nccessar, to take
into account surface tension and , iscosit, as well as inertia. Therefore. l'lesset [ 15 1 and
others modified Rayleigh's equation to include these etlect. The, also included an
external time dependent pressure. representing an incident sound field

Lauterborn [ 161 solved the modified equation numerically for periodic incident
sound fields, seeking periodic oscillations of the bubble. He obtained them for small and
moderate values of the amplitude of the applied pressure. From his results hc plotted a
response curve for each applied pressure. showing the maximum bubble radius of the
periodic solution as a function of tne applied frequency. However, for %cry large
amplitudes of the applied pressure, the solution did not become periodic; or if it did, the
amplitudes did not lie on a smooth cure.

It-seemed to me that this difficulty with the large amplitude oscillations could be
avoided by taking into account the acoustic radiation from the bubble, just as was done
in the preceding section to describe the damping of underwater explosion bubble
oscillations. Therefore my student IM. Miksis and I [17] modified (7.4), the equation of
Keller and Kolodner, to include surface tension, viscosity and an incident sound field, in
the same way as Plesset and others had iodified Rayleigh's equation.

The equation we derived in this way is

4,u 3 4Aa, 2a a a, - c)] -a .-a a) -c a, a - -p-a a
(8,1

- aa-Va', - 2 1- ag)"it a/c ,

Here a(t) is the bubble radius at time t, c is the sound speed in the fluid, p is the fluid
density, g is the coefficient of viscosity of the fluid, -r is the surface tension, 2c W,' is the
time derivative of the potential of the incident sound field evaluated at the center of the
bubble and pA(a) is the difference between the bubble pressure and the pressure at
infinity. The pressure in the bubble was taken to be ka _3 -p,., where p, represents a
constant vapor pressure and k and y are constants. When c = x, (8.1) reduces to the
equation soled by Lauterborn: while when M = =p, = 0, it reduces to the
equation (7.4) of Keller and Kolodner.

To treat this equation we tirst studied the free oscillations corresponding to L!
by a phase plane analysis, and obtained results like those of Keller and Kolodner [14].
We also solved (8.1) numerically for the same case shown in Fig. 9 and obtained the
same result because surface tension and viscosity are negligible in that case.

Next we chose 2c 'g"(tI =p 'Psin wt, which is the same forcing function as was
used by Lauterborn [16]. Then we solved the equation analytically by the method of
averaging, in the same way as Prosperetti [18] had solved the equation used b,
Lauterborn. The results were similar to his, showing harmonic, subharmonic and
ultraharmonic resonances.

Finally we solved the eqiation numerically as an initial value problem, as Lauter-
born did. Some of our results are shown in Fig. 10. They agree with his except at the
largest forcing amplitudes. Then our equation yields periodic solutions and a response
curve similar to those which we both found for smaller amplitudes, whereas his did not.
Thus the inclusion of the effects of acoustic radiation in (8.1) has had the desired effect
of yielding periodic oscillations and a response curve for even very large amplitudes of
the incident pressure field.
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